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Influence of noise-reduction schemes on statistics of the diffusion-limited aggregation model
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This paper is devoted to the problem of noise reduction in the diffusion-limited aggre¢bti#n model.
We investigate the influence of multiple-hit averaging on statistical properties of DLA clusters at meso- and
macroscopic length scales. For this purpose, we analyze the long-range correlation of the symmetry broken at
the microscopic level via the introduction of a chirality to the original Witten-Sander DLA algorithm. Instead
of the usual circular growth units, we consider them to consist of ckiiel without inversion symmetyy
combinations of microblocks. Extensive Monte Carlo simulations performed for off- and on-square-lattice
conditions reveal the asymptotically achiral behavior of the model, which also occurs when one proceeds to
noise-reducing DLA modifications such as multiple-hit averaging with and without erasing. This allows us to
conclude that neither of the noise-reducing schemes studied breaks the original balance between deterministic
and stochastic forces governing the long-range statistics of the DLA model.
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I. INTRODUCTION and dendritelike DLA patterns.
In the present work, we try to clarify the formulated prob-
The simplest and the most intriguing class of stochastidem of noise reduction by analysis of the long-range correla-
algorithms simulating nonequilibrium Laplacian systems istion of the symmetry broken at the microscopic level via the
the diffusion-limited aggregatio(DLA) model originally in- introduction of a chirality to the ordinary Witten-Sander
troduced by Witten and Sandgt,2]. Since its introduction DLA model. Our theory is based on the concept of asymmet-
in 1981, this model has motivated many investigations deli¢c_conditions of aggregation—instead of circular growth
voted to the mathematical description and characterization dfMits, we consider each of them to consist of a chiral.,
growing clusters as well as to numerical simulations of natuSharacterized by the absence of left-right symmetgmbi-

ral processes such as viscous fingering, electrodeposition, diation of microblocks. We demonstrate that both the original

electric breakdown, dissolution of porous materials, and for—and the noise-reducing DLA algorithms are asymptotically

mation of dendrites and dendrimd@-10]. However, some achlral,. yielding an additional argument that the multiple-hit
) . averaging does not break the original balance between deter-
details of DLA fundamentals are still far from clear, espe-

iallv th | (1 o bl £ pattern f ministic and stochastic forces governing the long-range sta-
(r:r:ilt?(l)n[iie {% evant to asymptotic problems ot patlern T0rqtics of the DLA model. The paper is organized as follows.

, ) In Sec. I, we introduce general principles of the microchiral
One of the most important DLA puzzles deals with the ) o gigorithm. Then Secs. Il and IV describe extensive
morphological crossover from ramified to dendritelike clus-\jonte Carlo simulations and subsequent chiral analysis of
ters as one replaces the original Witten-Sander algorithm byhe cjusters grown in off- and on-square-lattice conditions,
various multiple-hit averaging schemes that are applied t@espectively. Finally, Sec. V gives a discussion of the results
decrease stochastic noig6—20. This poses the following gbtained and formulates the conclusions.
major question formulated by Meakin and co-workers
[21,22: can we consider the resulting ‘“noise-reduced”
shapes to provide statistical properties of the original DLA
clusters? Although the multiple-hit averaging schemes are Let us assume a DLA process taking place in two-
generally accepted and widely used in numerical simuladimensional(2D) open geometryr =(x,y) with a circular
tions, their adequacy to the DLA issue needs further theoretsource of walkers outside a cluster placed at the o1i@j6)
ical justification. In this connection, particularly obscure isinitially. A walker released from the source obeys simple
the effect of the cluster anisotropy which systematically ap+andom wandering until it aggregates onto a position some-
pears in on-lattice simulations and then is enhanced considvhere on the cluster surface. The only difference from the
erably as one increases the intensity of averagit6-27.  ordinary Witten-Sander DLA model consists in a modifica-
Although this anisotropy enhancement, in itself, is not surtion of the neighborhood conditions determining the geom-
prising (since it has a rather clear phenomenological explaetry of aggregation. We consider the walker as a particle
nation [23,24 and can be excluded by a modification of whose image in the mirror plane cannot be brought to coin-
boundary condition$12]), it adds to the serious reasons to cide with itself, i.e., it demonstrates 2D chirality. In this
investigate and compare long-range statistics of the originalork, we choose one of the simplest chiral shapes, shown in

Fig. 1. The structure involves five microblocks combined in
chiral}-like way; each microblock is a circular unit of diam-
*Electronic address: bogoyavlenskiy@usa.net eterd.

II. GENERAL FORMULATION
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(a) (b) R+10d and are lost if the distance to the cluster origin ex-
ceeds the critical value of B+ 10d). Since the diffusing
particles are asymmetric, each walker is characterized, ex-
cept for the position of its center, by a polar angle the
orientation parameter relative to the coordinate basis. We
consider this orientation angle to be either uniformly distrib-
uted in the ranger [ 0°,360°] (for off-lattice simulationg
or chosen from the discrete set{0°,90°,180°,270F (for
on-square-lattice algorithmsvhen a walker is released from
the source, and then to keep its initial value during the wan-
dering until aggregation occurs. Following this procedure,
we investigated the chiral parametdéB(¢,r), ¢(r), and

In order to investigate and describe chiral properties ofP(R)] for DLA clusters of radius up to Tl that contain up
DLA clusters on differentmicro-, meso-, and macroscopic to 12000 chiral particles. In order to obtain a sufficiently
length scales, we construct a measure based on the locgxtensive data set for subsequent statistical analysis, we
orientation of walker attachment. For a new walker stickingsimulated ensembles of 201 clusters for each particular
onto the cluster surface, let andr be the vectors from the size studied.
cluster origin to the positions of the attached walker and its
“parent” in the aggregatdupon which the attachment oc-
curg, respectively; we consider here the position of a particle
to be related to its center. Then the vectosets the radial For off-lattice simulations of DLA clusters, we have
direction of the elementary act of aggregation, whereas thadapted an efficient hierarchical algorithm designed by Tol-
parameter,=r’—r determines the local sticking orienta- man and Meakii28]. The approach consists in constructing
tion. We define the angle of attachmen& [ —180°,1809to  a collection of coarse-grained cluster versions at different
be measured counterclockwise frarto r. In description of  length scales. First, the cluster as seen at the coarsest scale is
the particle ensemble forming a DLA cluster, we focus onexamined and, if a jump to a randomly chosen direction on
the probability P(¢,r) giving a distribution of the attach- that scale can be taken by the diffusing walker, the jump is
ment anglep for the particles located in a neighborhood of executed. Otherwise, one switches to the next lower scale to
the circle of radius =|r|; the functionP(¢,r) is considered get more accurate information about the location of the clus-

FIG. 1. Chiral walker(a) shown with its imageb) in the mirror
plane(dashed ling the structures represent asymmetric junctions of
five circular microblocks of diametet.

Ill. OFF-LATTICE DLA

to satisfy the normalization condition an ter in the vicinity of the walker. This process of consulting
more and more resolved approximations continues until one
jlgo" P do=1V 1 reaches the lowest scale. At this level, one knows whether

_180° (¢.r)de=1Vr. @ the diffusing walker has already contacted the cluster or if it

can be moved by a small distance. After a new particle has
The probability distributionP(¢,r) defined above pro- been added to the DLA cluster, the collection of hierarchical

vides the following quantitative measure of chirality: coarse-grained data is updated.
L50° An overall picture for the off-lattice DLA model with
— = chiral particles is summarized by Figs. 2 and 3. In Fi@) 2
@(r) J, Oa(pP((p,I’)d(p. @ we present the computed dependence of the probability dis-

tribution P(e¢,r) on the angle of attachmente
The functione(r) determines the average angle of attach-€[—180°,1807 for the following three values of the dis-
ment for the particles located at distancérom the cluster tance from the cluster origim=5d, 50d, and 50@. The
origin. If the distributionP(¢,r) demonstrates an asymmet- data obtained demonstrate a qualitative resemblance to the
ric behavior on angle inversion, i.eB(¢,r)#P(—¢,r), results reported for the ordinary DLA model with circular
then the average angle(r)#0. This local parameter of particles[29,30; the curves are satisfactorily approximated

chirality ¢(r) can be generalized for the whole DLA cluster, by cosine functions as
producing the measure usually called to¢atory power

1
q)(R)EBIRerl;(r)dr o P(QDJ):ﬁ*‘A(r)COi@). (4)
RPJo '

where the constant 1/360° ensures the normalization condi-

whereR is the radius of gyration anD is the fractal dimen- tion [Eqg. (1)] and the parametek(r), being the cosine am-
sion of the cluster. The absolute value of the rotatory poweplitude, decreases monotonically as the distanealarges.
®(R) can be used to assess whether one cluster is more dihis fitting formula mimics the fact that, in the DLA model,
less chiral than another; the sign®{R) describes the hand- the forward sticking of walkers dominates the backward
edness assigned to the aggregate. sticking, especially for small cluster size. The deviations

In our Monte Carlo simulations, the chiral walkdisig.  from Eq. (4) become remarkable only when the distance
1(a)] are launched at a random position on a circle of radiugrom the cluster origirr is comparable with the particle di-
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and(3) are presented in Figs(l2 End 4c), respectively. The

dependence of the average anglen the distance from the
cluster originr shown in Fig. 2b) originates from a value of
several degrees in the clockwise direction as the cluster ini-
(a) tiates its growth. The subsequent increase i@sults in pro-

gressive decrease of the absolute value db zero;| ¢(r)|
becomes comparable with the statistical ertdd.07° as the
distancer exceeds 50f0. As seen from Fig. @), the depen-
e T = = o =2 dence of the rotatory poweb on the cluster radiuR ob-

Attachment angle ¢ (degree) tained from integration of the average angiér) is similar
PEEL to the evolutione of r [Fig. 2(b)]. The main conclusion we

3 can draw from these two plots is that the functies(s) and

H ®(R) are extrapolated to zero in the limits»~ and R

—oo, respectively, i.e., the off-lattice DLA model with chiral

i (C) particles is asymptotically achiral. Indeed, an insignificant

initial chirality resolved for small clustef®/d< 10" progres-

sively fades as one proceeds to larger sélé>10?. This

absence of macroscopic chirality is illustrated by Fig. 3

o5 - s o - - -, which presents a typical DLA cluster of radii&= 1O3d._
Distance r/d (arb. units) Cluster radius R/d (arb. units) The pattern obtained looks like a regular DLA cluster simu-

lated by the original Witten-Sander off-lattice algorithm
FIG. 2. Statistical analysis of the chiral off-lattice DLA model. [31].

(@) Probability distribution P(¢,r) vs angle of attachment
e[ —180°,1809 for the following three distances from the cluster
origin: r/d=5, 50, and 500; each curve is calculated by the aver- IV. ON-LATTICE DLA
aging of a 16-particle ensembletb) Average angle of attachment o on_jattice Monte Carlo simulations, we take a square
¢ vs distance from the cluster origiid <[5,1009 on a logarith-  grid of spacingd relevant to the imposed structure of the
mic scale; statistical errors of data at®.07°. (c) Rotatory power  hiral walker[Fig. 1(a)]. The corresponding transformation
® vs cluster radiu®/d €[ 5,1000Q on a logarithmic scale; statistical f the off-lattice algorithm includes the following simplifica-
errors of data are-0.04°. tions: (i) the wandering of walkers is restricted to tfE0),
o (10), (01), and(01) crystallographic directions, i.e., we
ameterd; a peak of the probability distributioP(¢,r) as  consider nearest-neighborhood conditions of aggregaiion;
¢=0° observed at=500d and 5@ splits into two maxima.  he angle of particle orientatioa is randomly chosen with
for the curver =5d. _ equal probability from the four values 0°, 90°, 180°, and
The parameters of chirality(r) and ®(R) calculated 270° (the latter two angles, 180° and 270°, are identical with
from the probability distributiorP(¢,r) with use of Eqs(2)  0° and 90°, respectively, due to the center symmetry of the
walkers; (iii) finally, the hierarchical coarse-grained scheme
[28] is reduced to the classic Witten-Sander algorif

;;9-%::%

oo = 5d
== 1 =50d
o r=500d

Probability P(o,r) (arb. units)
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(b)

Rotatory power ®(R) (degree)
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Average angle 5(r) (degree)
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24d

A. No noise reduction

The substitution of the on-square lattice conditions for the
off-lattice chiral DLA model gives the results summarized
s % by Figs. 4, 5, and 6. In Fig. 4, we presdntthe probability
7% distribution P(¢,r) as a function ofp e[ —180°,1809 for

e, 2L P~ the same three distances from the cluster origin as in the
Wi LR e 5 A i off-lattice algorithm:r =5d, 50& and 50@ [Fig. 4a)], (ii)
SR . B the average angle of attachmexr(r) [Fig. 4(b)], and(iii) the
s Y a? rotatory power®(R) [Fig. 4(c)]. The data obtained show

that the introduced microchirality yields only a slight me-
3 sochirality for clusters of small size; the rotatory powleiis
5 characterized by values ef1° in the counterclockwise di-
" 7 rection atR=10d. This chiral behavior at mesoscale, how-
ever, is progressively lost as the radius of gyratirin-
creases further, to the benefit of cluster growth. As a
consequence, the on-square lattice DLA model with chiral
FIG. 3. Typical off-lattice DLA cluster consisting of 12000 particles is asymptotically achiral like the off-lattice one. Ac-
chiral particles; gyration radiuR~10°d. tually, the typical cluster of radiuR=10°d shown in Fig. 5
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FIG. 4. Statistical analysis of the chiral DLA model on a square FIG. 6. Field-plot representation of the mean cluster occupancy
lattice (d is the grid spacingin the case of the original nonaverag- p(x,y) for the chiral DLA model on a square latticd (s the grid
ing algorithm. (a) Probability distributionP(¢,r) vs angle of at- spacing in the case of the original nonaveraging algorithm. These
tachmenty e[ —180°,1809 for the following three distances from data are computed from ensemble averaging over 2500 clusters of
the cluster originr/d=5, 50, and 500; each curve is calculated by radius R~10?d consisting of 400 chiral particles; the fields are
the averaging of a (4 10°)-particle ensembldb) Average angle of 0.005<p<0.05, 0.05<p<0.1, and 0.£p<1 from the outer to
attachmentyp vs distance from cluster origin/de[5,1009 on a  the inner.
logarithmic scale; statistical errors of data ar@.04°. (c) Rotatory
power @ vs cluster radiugk/d €[5,1000 on a logarithmic scale;
statistical errors of data are0.02°.

function p(x,y) presented in Fig. 6. The obtained contour
plots of p(x,y) are close to concentric circles, thus addition-
ally demonstrating the achiral and isotropic properties of the

does not illustrate any chiral properties at macroscopic scalghiral on-lattice DLA algorithm.

looking similar to the corresponding off-lattice pattefig.
3). B. Noise reduction

In order to study the spatial distribution of the grown The effect of “noise reduction” is achieved when one
cluster ensemble, we have calculated the mean occupan%plies multiple-hit averaging to the DLA model. The gen-
eralization is based on the original DLA algorithf] in
g which a walker wanders on the lattice until it sticks onto a
’ : ; position at the cluster surface, but instead of immediate ag-
» & X & gregation of that walker to the cluster, one adds unity to a
L P e counter of the walker site corresponding to the surface posi-
' tion; when the counter exceeds a predetermined vBlge
; V L =2, the walker site is considered to be occupied. There are
3% gttt the two following variations of the averaging procedufig:
b ke 1y 2 2 S et ; ¥ the multiple-hit scheme with erasing, in which the counters
e S Y on all other sites are dropped to zero as a new particle is
oF 55 &% ‘ 7, _ added to the cluster, arid) the multiple-hit scheme without
: Xy £ erasing, also called the Tang algoritfi32], in which the
N ' counters accumulate the number of walker visits during the
i whole aggregation process.

1. Multiple hits with erasing

For this noise-reducing modification of the DLA model,
FIG. 5. Typical DLA cluster on square lattical (is the grid ~ We investigated two- and four-hit averaging schemes, i.e.,
spacing in case of the original nonaveraging algorithm; the clusterwith Nc=2 andNc=4, respectively; the results obtained
consisting of 12 000 chiral particles is grown up to gyration radiusare summarized by Figs. 7 and 8. In Fig. 7, we illustrate
R~10%d. evolution of the probability distributioP(¢,r) [Figs. 7a)
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FIG. 7. Statistical analysis of the chiral DLA model on a square lattits the grid spacingin case of the multiple-hit algorithm with
erasing; parameter of averagibg =2 [plots (a), (b), and(c)] or Nc=4 [plots(d), (e), and(f)]. (a) and(d) Probability distributionP(¢,r)
vs angle of attachment e [ —180°,1809 for the following two distances from the cluster origifid=5 and 50; each curve is calculated
by the averaging of a (4 10°)-particle ensemble(b) and (e) Average angle of attachment vs distance from the cluster origin'd
€[5,100 on a logarithmic scale; statistical errors of data ar@.06°. (c) and (f) Rotatory powerd vs cluster radiusk/d[5,100 on a
logarithmic scale; statistical errors of data ar€.03°.
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FIG. 8. Field-plot representation of the mean cluster occuparigyy) for the chiral DLA model on a square latticeé (s the grid
spacing in case of the multiple-hit algorithm with erasing; parameter of averaljigig 2 (@) or Nc=4 (b). These data are computed from
ensemble averaging over 1000 clusters of rafusl0?d consisting of 200a) or 100 (b) chiral particles; the fields are 0.085<0.05,
0.05<p<0.1, and 0.£¥p<1 from the outer to the inner.
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FIG. 9. Statistical analysis of the chiral DLA model on a square lattités (the grid spacingin the case of the multiple-hit algorithm
without erasingithe Tang schemegparameter of averaging:-=4 [plots (a), (b), and(c)] or Nc= 16 [plots (d), (e), and(f)]. (a) and (d)
Probability distributionP(¢,r) vs angle of attachmeng [ —180°,1809 for the following two distances from the cluster origifd=5
and 50; each curve is calculated by the averaging offepa@ticle ensembleb) and(e) Average angle of attachmeatvs distance from the
cluster originr/de[5,100] on a logarithmic scale; statistical errors of data ar@.04°. (c) and (f) Rotatory powerd vs cluster radius
R/de[5,100 on a logarithmic scale; statistical errors of data ar@.02°.

accompanied by a development of chirality at the macros-
cale, which is actually absent, as also follows from Fig. 8.

and 7d)], of the average angle of attachmepgr) [Figs.
7(b) and 7e)], and of the rotatory powe®(R) [Figs. 7c)
and 7f)] caused by the variation of paramebés. One can
resolve the following changes as the averaging intensity in-
creases{(i) the forward-aggregating directiomg=0°, be-
comes preferable, so angle dispersion of the probability dis- The application of the other modification of the multiple-
tribution P(¢,r) slightly decreasedji) some peculiarities at it averaging(the Tang proceduyeo the chiral DLA model

¢~*70° are revealed in the curvéy¢,r), corresponding s summarized by Figs. 9 and 10; here we give the results for
to the secondmost preferable aggregation, with respect to thg

X s e L c=4 andN:=16. In Fig. 9, the probability distribution
main forward orlentaﬂon(lu) as a rather surprising result, P(e.r) [Figs. 98) and 9d)], the average angle of attach-
the chiral parameterg(r) and ®(R) demonstrate sign in-

version from the counterclockwise directiorelevant to the ment ¢(r) [Figs. 9b) and 9e)], and the rotatory power

on-lattice algorithm without noise reductipto the clock- ©(R) [Figs. qc) and 9f)] are presented. The figure shows

wise one ad\¢ increases from 2 to 4. An insignificant chiral- j[hat the Tang scheme, as well as the multiple hits with eras-

ity observed for small cluster<10d then successfully N9 (Fig._ 7), causes Qecrease of the angle disper;ion. of the
fades at the macroscopic scale. Thus, the results of thgrobabmtyP(go,r); this leads to the same peculiarities in the
multiple-hit scheme with erasing qualitatively resemble theCUves P(e,r) at ¢=~=70° clearly resolved as secondary
results for the nonaveraging algorithifig. 4). peaks. _As in a_II the a_llgorlthms stu_dled _beft()_Feag_s. 2,4, and
Additional information characterizing the crossover from 7). @ slight chirality(in the clockwise directionis reported
the original DLA to this noise-reducing scheme is shown infor clusters of mesoradius and then disappears as one pro-
Fig. 8, which presents the mean cluster occupancy distribuceeds to macroscopic scale.
tions p(x,y) for Nc=2 [Fig. 8@)] and Nc=4 [Fig. 8b)]. The analysis of the mean cluster occupap€y,y) pre-
The imposed averaging results in the appearance of a radiaénted in Fig. 10 foNc=4 [Fig. 10@)] and Nc=16 [Fig.
anisotropy ofp(x,y): the isotropic(or quasi-isotropicdis- ~ 10(b)] reveals the achiral and anisotropic properties of the
tribution of the mean occupancy corresponding to the nonproduced patterns that qualitatively repeat the results of the
averaging algorithm(Fig. 6) transforms here to an aniso- multiple-hit averaging with erasingFig. 8). As the main
tropic pattern with fourfold symmetry rotated by the angledifference from Fig. 8, Tang's averaging leads to DLA clus-
B~37° in the clockwise direction, relative to the coordinateters that are more anisotropic along the preferential growth
basis[33]. This appearance of growth axes is not, howeverdirections determined asn/2— 3, n={0,1,2,3 [33].

2. Multiple hits without erasing
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FIG. 10. Field-plot representation of the mean cluster occupafiryy) for the chiral DLA model on a square lattice (s the grid
spacing in case of the multiple-hit algorithm without erasitthe Tang schemgparameter of averaging-= 4 (a) or 16(b). These data are
computed from ensemble averaging over 1000 clusters of ratius0’d consisting of 350&) or 300 (b) chiral particles; the fields are
0.005<p<0.05, 0.05:p<0.1, and 0.5 p<1 from the outer to the inner.

V. DISCUSSION AND CONCLUSIONS needs to cut the Gordian knot of deterministic and stochastic
contributions, which both affect the process. The DLA deter-

Let us summarize the statistical investigations of the DI‘Aministic part can be described separately from the stochastic

model performed and described in the previous two SeCtlonSpart—it is the quasi-steady-state approximation of the full

The most important result we obtained is that the introduc,... . .
tion of microchirality into the ordinary Witten-Sander formu- diffusion problem{12]:

lation does not, remarkably, yield a chiral behavior of grow- V2F(r)=0 (5)

ing clusters at the macroscopic length scale for either the '

original DLA algorithm or various multiple-hit averaging F(r), .= Fo(r) 6)
rer— 0 '

schemes. What does this mean, how can we explain it, and
what can we conclude? These are the topics of this section.
Before we start to discuss the questions posed above, let

us review a general natural picture. In spite of the variety of _ _ )
growth structures observed in non-equilibrium Laplacian-HereF(r) is the growth potentiale.g., energy density, con-

type systemg$3—10, the formation of chiral patterns is re- Centration, etg.satisfying the Laplace equatidB); Fo(r) is
ported only for a small number of objects such as liquid@ 9iven funct|on_that implies t_he Dirichlet conditigf) on
crystals[34,35, bacterial colonie§36—39, and fullerene- the boundary er; the symbolr, denotes the interface part
based films[40,41]. However, the vast majority of growth of the whole boundary, on which the conservation (@vis
units demonstrate a significant asymmetry at the microscopitnposed;n is the unit normal,V, is the normal growth
level consistent with geometric or kinetic factors—typical speed, and” is a constant determined by diffusivity and
examples vary from chiral carbon chains in organic mol-other physical parameters.
ecules[42] to the complex collective behavior of bacteria  As follows from this general formulatiofEgs. (5)—(7)],
[43]. the deterministic contribution of DLA is strongly influenced
This natural disparity between micro- and macroasymmeby asymmetry in aggregation conditions on the interface.
try (or symmetry is closely associated with the theoretical The imposed geometrical chirality of the walkers definitely
problem of the balance between deterministic and stochastimplies chiral properties of Ed7) arising from asymmetric
forces in growth processes that are far from equilibrium. In-behavior of the normal vectar. In other words, if the DLA
deed, the chirality here plays the role of an order/disordemodel was a fully deterministic process, our introduction of
parameter, the scale evolution of which can be quantitativelynicrochirality would result in chiral patterns at macroscopic
studied, e.g., by rotatory power measurements. Thus thiength scale as well as at mesoscale. The absence of clearly
DLA model, the principal representation of nonequilibrium, resolved macrochirality allows us to draw the conclusion
diffusive, and fractal growth, is of fundamental importance. that, in the superposition of deterministic and stochastic
In order to analyze the DLA mechanism in detail, oneDLA forces, the random contribution is dominating. The

Vn|rer_C:F(VF'n|rer_c)- (7)
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domination here is considered as a short-range loss déss to have the following serious gap—the appearance of
memory about local growth conditions. anisotropy has, as for its background, the very lattice effect
The weak long-range correlation of symmetry revealed incaused by various growth paths of walkers aggregating at
the DLA-produced clusters is not, in principle, a self-evidentdifferent crystallographic directiong23,24. As shown by
property caused by the fractal scaling. For the simplest counJohnson and Sekerkd?2], this growth anisotropy can be
terexample, we can discuss the other class of stochastguccessfully excluded by the introduction of an attachment
growth algorithms based on the Eden mofiéd]. In this  probability depending on crystallographic orientation and av-
process, a fractal cluster is formed by the appearance of nearaging intensity, so the problem raised still remains unclear.
branches originating from any of the particles of that cluster Based on the possible connection of multiple-hit averag-
with a given probability(the variable parameterAs pointed ing and DLA determinism, one may expect a substantial in-
out by Ben-Jacob and co-workd36,37], the introduction of  crease of the deterministic contribution and, therefore, a
chirality into the mechanism of an Eden-type sidebranchingrossover from achiralweak long-range correlatiorio chi-
combined with artificial nutrient laws results in a numerical ral (stable long-range correlatipishapes when we proceed
scheme that satisfactorily simulates the behavior of the bade the noise-reducing schemes. However, neither the achiral/
terium Bacillus subtilis known to form chiral colonies. The chiral crossover nor even a significant rise of chirality at
self-similar patterns produced maintain the initial micro- mesoscale is experimentally observed; the only difference
chirality independently of length scale, demonstrating thefrom the Witten-Sander clusters is that the multiple-hit pat-
domination of local growth rules over statistical randomnessterns are more anisotropic and spatially rarefied. Thus we
in contrast with the DLA model. conclude that neither of the averaging algorithms studied
There exists a point of view that multiple-hit averaging (multiple hits with and without erasindgoreaks the original
applied to the Witten-Sander DLA algorithm should lead tobalance existing between the deterministic and stochastic
noise reduction, i.e., the original stochastic nature of DLA isforces in the DLA model. We believe this result to be fun-
reduced and the randomness of growing clusters is dedamental for all DLA-type statistics.
creased. A reasonable justification focuses on the lattice an-
isotropy being considered as a parameter of order; then the ACKNOWLEDGMENT
known enhancement of the anisotropy, a result of the
multiple-hit schemes, is generally explained as a more deter- | would like to thank Dr. Natasha Chernova for stimulat-
ministic behavior of the model. This theory seems nevertheing discussions and helpful comments.
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