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Influence of noise-reduction schemes on statistics of the diffusion-limited aggregation model
at meso- and macroscales

Vladislav A. Bogoyavlenskiy*
Low Temperature Physics Department, Moscow State University, 119899 Moscow, Russia

~Received 1 August 2000; published 22 December 2000!

This paper is devoted to the problem of noise reduction in the diffusion-limited aggregation~DLA ! model.
We investigate the influence of multiple-hit averaging on statistical properties of DLA clusters at meso- and
macroscopic length scales. For this purpose, we analyze the long-range correlation of the symmetry broken at
the microscopic level via the introduction of a chirality to the original Witten-Sander DLA algorithm. Instead
of the usual circular growth units, we consider them to consist of chiral~i.e., without inversion symmetry!
combinations of microblocks. Extensive Monte Carlo simulations performed for off- and on-square-lattice
conditions reveal the asymptotically achiral behavior of the model, which also occurs when one proceeds to
noise-reducing DLA modifications such as multiple-hit averaging with and without erasing. This allows us to
conclude that neither of the noise-reducing schemes studied breaks the original balance between deterministic
and stochastic forces governing the long-range statistics of the DLA model.

DOI: 10.1103/PhysRevE.63.011602 PACS number~s!: 68.70.1w, 61.43.Hv, 02.70.Rr, 87.15.Nn
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I. INTRODUCTION

The simplest and the most intriguing class of stocha
algorithms simulating nonequilibrium Laplacian systems
the diffusion-limited aggregation~DLA ! model originally in-
troduced by Witten and Sander@1,2#. Since its introduction
in 1981, this model has motivated many investigations
voted to the mathematical description and characterizatio
growing clusters as well as to numerical simulations of na
ral processes such as viscous fingering, electrodeposition
electric breakdown, dissolution of porous materials, and
mation of dendrites and dendrimers@3–10#. However, some
details of DLA fundamentals are still far from clear, esp
cially those relevant to asymptotic problems of pattern f
mation @11–15#.

One of the most important DLA puzzles deals with t
morphological crossover from ramified to dendritelike clu
ters as one replaces the original Witten-Sander algorithm
various multiple-hit averaging schemes that are applied
decrease stochastic noise@16–20#. This poses the following
major question formulated by Meakin and co-worke
@21,22#: can we consider the resulting ‘‘noise-reduced
shapes to provide statistical properties of the original D
clusters? Although the multiple-hit averaging schemes
generally accepted and widely used in numerical simu
tions, their adequacy to the DLA issue needs further theo
ical justification. In this connection, particularly obscure
the effect of the cluster anisotropy which systematically
pears in on-lattice simulations and then is enhanced con
erably as one increases the intensity of averaging@16–27#.
Although this anisotropy enhancement, in itself, is not s
prising ~since it has a rather clear phenomenological exp
nation @23,24# and can be excluded by a modification
boundary conditions@12#!, it adds to the serious reasons
investigate and compare long-range statistics of the orig
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and dendritelike DLA patterns.
In the present work, we try to clarify the formulated pro

lem of noise reduction by analysis of the long-range corre
tion of the symmetry broken at the microscopic level via t
introduction of a chirality to the ordinary Witten-Sand
DLA model. Our theory is based on the concept of asymm
ric conditions of aggregation—instead of circular grow
units, we consider each of them to consist of a chiral~i.e.,
characterized by the absence of left-right symmetry! combi-
nation of microblocks. We demonstrate that both the origi
and the noise-reducing DLA algorithms are asymptotica
achiral, yielding an additional argument that the multiple-
averaging does not break the original balance between d
ministic and stochastic forces governing the long-range
tistics of the DLA model. The paper is organized as follow
In Sec. II, we introduce general principles of the microchi
DLA algorithm. Then Secs. III and IV describe extensi
Monte Carlo simulations and subsequent chiral analysis
the clusters grown in off- and on-square-lattice conditio
respectively. Finally, Sec. V gives a discussion of the res
obtained and formulates the conclusions.

II. GENERAL FORMULATION

Let us assume a DLA process taking place in tw
dimensional~2D! open geometryr5(x,y) with a circular
source of walkers outside a cluster placed at the origin~0,0!
initially. A walker released from the source obeys simp
random wandering until it aggregates onto a position som
where on the cluster surface. The only difference from
ordinary Witten-Sander DLA model consists in a modific
tion of the neighborhood conditions determining the geo
etry of aggregation. We consider the walker as a part
whose image in the mirror plane cannot be brought to co
cide with itself, i.e., it demonstrates 2D chirality. In th
work, we choose one of the simplest chiral shapes, show
Fig. 1. The structure involves five microblocks combined
chiral o-like way; each microblock is a circular unit of diam
eterd.
©2000 The American Physical Society02-1
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In order to investigate and describe chiral properties
DLA clusters on different~micro-, meso-, and macroscopic!
length scales, we construct a measure based on the
orientation of walker attachment. For a new walker sticki
onto the cluster surface, letr 8 andr be the vectors from the
cluster origin to the positions of the attached walker and
‘‘parent’’ in the aggregate~upon which the attachment oc
curs!, respectively; we consider here the position of a parti
to be related to its center. Then the vectorr sets the radial
direction of the elementary act of aggregation, whereas
parameterr0[r 82r determines the local sticking orienta
tion. We define the angle of attachmentwP@2180°,180°# to
be measured counterclockwise fromr to r0. In description of
the particle ensemble forming a DLA cluster, we focus
the probabilityP(w,r ) giving a distribution of the attach
ment anglew for the particles located in a neighborhood
the circle of radiusr[ur u; the functionP(w,r ) is considered
to satisfy the normalization condition onw

E
2180°

180°

P~w,r !dw51 ;r . ~1!

The probability distributionP(w,r ) defined above pro-
vides the following quantitative measure of chirality:

w̄~r ![E
2180°

180°

wP~w,r !dw. ~2!

The functionw̄(r ) determines the average angle of attac
ment for the particles located at distancer from the cluster
origin. If the distributionP(w,r ) demonstrates an asymme
ric behavior on angle inversion, i.e.,P(w,r )ÞP(2w,r ),
then the average anglew̄(r )Þ0. This local parameter o
chirality w̄(r ) can be generalized for the whole DLA cluste
producing the measure usually called therotatory power,

F~R![
D

RDE0

R

r D21w̄~r !dr, ~3!

whereR is the radius of gyration andD is the fractal dimen-
sion of the cluster. The absolute value of the rotatory pow
F(R) can be used to assess whether one cluster is mor
less chiral than another; the sign ofF(R) describes the hand
edness assigned to the aggregate.

In our Monte Carlo simulations, the chiral walkers@Fig.
1~a!# are launched at a random position on a circle of rad

FIG. 1. Chiral walker~a! shown with its image~b! in the mirror
plane~dashed line!; the structures represent asymmetric junctions
five circular microblocks of diameterd.
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R110d and are lost if the distance to the cluster origin e
ceeds the critical value of 2(R110d). Since the diffusing
particles are asymmetric, each walker is characterized,
cept for the position of its center, by a polar anglea, the
orientation parameter relative to the coordinate basis.
consider this orientation angle to be either uniformly distr
uted in the rangeaP@0°,360°# ~for off-lattice simulations!
or chosen from the discrete setaP$0°,90°,180°,270°% ~for
on-square-lattice algorithms! when a walker is released from
the source, and then to keep its initial value during the w
dering until aggregation occurs. Following this procedu
we investigated the chiral parameters@P(w,r ), w̄(r ), and
F(R)] for DLA clusters of radius up to 103d that contain up
to 12 000 chiral particles. In order to obtain a sufficien
extensive data set for subsequent statistical analysis,
simulated ensembles of 102–106 clusters for each particula
size studied.

III. OFF-LATTICE DLA

For off-lattice simulations of DLA clusters, we hav
adapted an efficient hierarchical algorithm designed by T
man and Meakin@28#. The approach consists in constructin
a collection of coarse-grained cluster versions at differ
length scales. First, the cluster as seen at the coarsest sc
examined and, if a jump to a randomly chosen direction
that scale can be taken by the diffusing walker, the jump
executed. Otherwise, one switches to the next lower scal
get more accurate information about the location of the cl
ter in the vicinity of the walker. This process of consultin
more and more resolved approximations continues until
reaches the lowest scale. At this level, one knows whe
the diffusing walker has already contacted the cluster or
can be moved by a small distance. After a new particle
been added to the DLA cluster, the collection of hierarchi
coarse-grained data is updated.

An overall picture for the off-lattice DLA model with
chiral particles is summarized by Figs. 2 and 3. In Fig. 2~a!,
we present the computed dependence of the probability
tribution P(w,r ) on the angle of attachmentw
P@2180°,180°# for the following three values of the dis
tance from the cluster origin:r 55d, 50d, and 500d. The
data obtained demonstrate a qualitative resemblance to
results reported for the ordinary DLA model with circula
particles@29,30#; the curves are satisfactorily approximate
by cosine functions as

P~w,r !5
1

360°
1A~r !cos~w!, ~4!

where the constant 1/360° ensures the normalization co
tion @Eq. ~1!# and the parameterA(r ), being the cosine am
plitude, decreases monotonically as the distancer enlarges.
This fitting formula mimics the fact that, in the DLA mode
the forward sticking of walkers dominates the backwa
sticking, especially for small cluster size. The deviatio
from Eq. ~4! become remarkable only when the distan
from the cluster originr is comparable with the particle di

f
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INFLUENCE OF NOISE-REDUCTION SCHEMES ON . . . PHYSICAL REVIEW E63 011602
ameterd; a peak of the probability distributionP(w,r ) as
w50° observed atr 5500d and 50d splits into two maxima
for the curver 55d.

The parameters of chiralityw̄(r ) and F(R) calculated
from the probability distributionP(w,r ) with use of Eqs.~2!

FIG. 2. Statistical analysis of the chiral off-lattice DLA mode
~a! Probability distribution P(w,r ) vs angle of attachmentw
P@2180°,180°# for the following three distances from the clust
origin: r /d55, 50, and 500; each curve is calculated by the av
aging of a 106-particle ensemble.~b! Average angle of attachmen

w̄ vs distance from the cluster originr /dP@5,1000# on a logarith-
mic scale; statistical errors of data are60.07°. ~c! Rotatory power
F vs cluster radiusR/dP@5,1000# on a logarithmic scale; statistica
errors of data are60.04°.

FIG. 3. Typical off-lattice DLA cluster consisting of 12 00
chiral particles; gyration radiusR'103d.
01160
and~3! are presented in Figs. 2~b! and 2~c!, respectively. The
dependence of the average anglew̄ on the distance from the
cluster originr shown in Fig. 2~b! originates from a value of
several degrees in the clockwise direction as the cluster
tiates its growth. The subsequent increase ofr results in pro-
gressive decrease of the absolute value ofw̄ to zero;uw̄(r )u
becomes comparable with the statistical error60.07° as the
distancer exceeds 500d. As seen from Fig. 2~c!, the depen-
dence of the rotatory powerF on the cluster radiusR ob-
tained from integration of the average anglew̄(r ) is similar
to the evolutionw̄ of r @Fig. 2~b!#. The main conclusion we
can draw from these two plots is that the functionsw̄(r ) and
F(R) are extrapolated to zero in the limitsr→` and R
→`, respectively, i.e., the off-lattice DLA model with chira
particles is asymptotically achiral. Indeed, an insignifica
initial chirality resolved for small clustersR/d,101 progres-
sively fades as one proceeds to larger scaleR/d.102. This
absence of macroscopic chirality is illustrated by Fig.
which presents a typical DLA cluster of radiusR5103d.
The pattern obtained looks like a regular DLA cluster sim
lated by the original Witten-Sander off-lattice algorith
@31#.

IV. ON-LATTICE DLA

For on-lattice Monte Carlo simulations, we take a squ
grid of spacingd relevant to the imposed structure of th
chiral walker @Fig. 1~a!#. The corresponding transformatio
of the off-lattice algorithm includes the following simplifica
tions: ~i! the wandering of walkers is restricted to the^10&,
^1̄0&, ^01&, and ^01̄& crystallographic directions, i.e., w
consider nearest-neighborhood conditions of aggregation~ii !
the angle of particle orientationa is randomly chosen with
equal probability from the four values 0°, 90°, 180°, a
270° ~the latter two angles, 180° and 270°, are identical w
0° and 90°, respectively, due to the center symmetry of
walkers!; ~iii ! finally, the hierarchical coarse-grained schem
@28# is reduced to the classic Witten-Sander algorithm@1#.

A. No noise reduction

The substitution of the on-square lattice conditions for
off-lattice chiral DLA model gives the results summarize
by Figs. 4, 5, and 6. In Fig. 4, we present~i! the probability
distribution P(w,r ) as a function ofwP@2180°,180°# for
the same three distances from the cluster origin as in
off-lattice algorithm:r 55d, 50d, and 500d @Fig. 4~a!#, ~ii !
the average angle of attachmentw̄(r ) @Fig. 4~b!#, and~iii ! the
rotatory powerF(R) @Fig. 4~c!#. The data obtained show
that the introduced microchirality yields only a slight m
sochirality for clusters of small size; the rotatory powerF is
characterized by values of'1° in the counterclockwise di-
rection atR510d. This chiral behavior at mesoscale, how
ever, is progressively lost as the radius of gyrationR in-
creases further, to the benefit of cluster growth. As
consequence, the on-square lattice DLA model with ch
particles is asymptotically achiral like the off-lattice one. A
tually, the typical cluster of radiusR5103d shown in Fig. 5

r-
2-3
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VLADISLAV A. BOGOYAVLENSKIY PHYSICAL REVIEW E 63 011602
does not illustrate any chiral properties at macroscopic sc
looking similar to the corresponding off-lattice pattern~Fig.
3!.

In order to study the spatial distribution of the grow
cluster ensemble, we have calculated the mean occup

FIG. 4. Statistical analysis of the chiral DLA model on a squa
lattice (d is the grid spacing! in the case of the original nonaverag
ing algorithm. ~a! Probability distributionP(w,r ) vs angle of at-
tachmentwP@2180°,180°# for the following three distances from
the cluster origin:r /d55, 50, and 500; each curve is calculated
the averaging of a (43106)-particle ensemble.~b! Average angle of

attachmentw̄ vs distance from cluster originr /dP@5,1000# on a
logarithmic scale; statistical errors of data are60.04°. ~c! Rotatory
power F vs cluster radiusR/dP@5,1000# on a logarithmic scale;
statistical errors of data are60.02°.

FIG. 5. Typical DLA cluster on square lattice (d is the grid
spacing! in case of the original nonaveraging algorithm; the clus
consisting of 12 000 chiral particles is grown up to gyration rad
R'103d.
01160
le,
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function r(x,y) presented in Fig. 6. The obtained conto
plots ofr(x,y) are close to concentric circles, thus additio
ally demonstrating the achiral and isotropic properties of
chiral on-lattice DLA algorithm.

B. Noise reduction

The effect of ‘‘noise reduction’’ is achieved when on
applies multiple-hit averaging to the DLA model. The ge
eralization is based on the original DLA algorithm@1# in
which a walker wanders on the lattice until it sticks onto
position at the cluster surface, but instead of immediate
gregation of that walker to the cluster, one adds unity to
counter of the walker site corresponding to the surface p
tion; when the counter exceeds a predetermined valueNC
>2, the walker site is considered to be occupied. There
the two following variations of the averaging procedure:~i!
the multiple-hit scheme with erasing, in which the counte
on all other sites are dropped to zero as a new particl
added to the cluster, and~ii ! the multiple-hit scheme withou
erasing, also called the Tang algorithm@32#, in which the
counters accumulate the number of walker visits during
whole aggregation process.

1. Multiple hits with erasing

For this noise-reducing modification of the DLA mode
we investigated two- and four-hit averaging schemes,
with NC52 and NC54, respectively; the results obtaine
are summarized by Figs. 7 and 8. In Fig. 7, we illustra
evolution of the probability distributionP(w,r ) @Figs. 7~a!

r
s

FIG. 6. Field-plot representation of the mean cluster occupa
r(x,y) for the chiral DLA model on a square lattice (d is the grid
spacing! in the case of the original nonaveraging algorithm. The
data are computed from ensemble averaging over 2500 cluste
radius R'102d consisting of 400 chiral particles; the fields a
0.005<r,0.05, 0.05<r,0.1, and 0.1<r,1 from the outer to
the inner.
2-4
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FIG. 7. Statistical analysis of the chiral DLA model on a square lattice (d is the grid spacing! in case of the multiple-hit algorithm with
erasing; parameter of averagingNC52 @plots ~a!, ~b!, and~c!# or NC54 @plots ~d!, ~e!, and~f!#. ~a! and~d! Probability distributionP(w,r )
vs angle of attachmentwP@2180°,180°# for the following two distances from the cluster origin:r /d55 and 50; each curve is calculate

by the averaging of a (43105)-particle ensemble.~b! and ~e! Average angle of attachmentw̄ vs distance from the cluster originr /d
P@5,100# on a logarithmic scale; statistical errors of data are60.06°. ~c! and ~f! Rotatory powerF vs cluster radiusR/dP@5,100# on a
logarithmic scale; statistical errors of data are60.03°.

FIG. 8. Field-plot representation of the mean cluster occupancyr(x,y) for the chiral DLA model on a square lattice (d is the grid
spacing! in case of the multiple-hit algorithm with erasing; parameter of averagingNC52 ~a! or NC54 ~b!. These data are computed from
ensemble averaging over 1000 clusters of radiusR'102d consisting of 200~a! or 100 ~b! chiral particles; the fields are 0.005<r,0.05,
0.05<r,0.1, and 0.1<r,1 from the outer to the inner.
011602-5



VLADISLAV A. BOGOYAVLENSKIY PHYSICAL REVIEW E 63 011602
FIG. 9. Statistical analysis of the chiral DLA model on a square lattice (d is the grid spacing! in the case of the multiple-hit algorithm
without erasing~the Tang scheme!; parameter of averagingNC54 @plots ~a!, ~b!, and ~c!# or NC516 @plots ~d!, ~e!, and ~f!#. ~a! and ~d!
Probability distributionP(w,r ) vs angle of attachmentwP@2180°,180°# for the following two distances from the cluster origin:r /d55

and 50; each curve is calculated by the averaging of a 106-particle ensemble.~b! and~e! Average angle of attachmentw̄ vs distance from the
cluster originr /dP@5,100# on a logarithmic scale; statistical errors of data are60.04°. ~c! and ~f! Rotatory powerF vs cluster radius
R/dP@5,100# on a logarithmic scale; statistical errors of data are60.02°.
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and 7~d!#, of the average angle of attachmentw̄(r ) @Figs.
7~b! and 7~e!#, and of the rotatory powerF(R) @Figs. 7~c!
and 7~f!# caused by the variation of parameterNC . One can
resolve the following changes as the averaging intensity
creases:~i! the forward-aggregating direction,w50°, be-
comes preferable, so angle dispersion of the probability
tribution P(w,r ) slightly decreases;~ii ! some peculiarities a
w'670° are revealed in the curvesP(w,r ), corresponding
to the secondmost preferable aggregation, with respect to
main forward orientation;~iii ! as a rather surprising resul
the chiral parametersw̄(r ) and F(R) demonstrate sign in
version from the counterclockwise direction~relevant to the
on-lattice algorithm without noise reduction! to the clock-
wise one asNC increases from 2 to 4. An insignificant chira
ity observed for small clustersR,10d then successfully
fades at the macroscopic scale. Thus, the results of
multiple-hit scheme with erasing qualitatively resemble
results for the nonaveraging algorithm~Fig. 4!.

Additional information characterizing the crossover fro
the original DLA to this noise-reducing scheme is shown
Fig. 8, which presents the mean cluster occupancy distr
tions r(x,y) for NC52 @Fig. 8~a!# and NC54 @Fig. 8~b!#.
The imposed averaging results in the appearance of a ra
anisotropy ofr(x,y): the isotropic~or quasi-isotropic! dis-
tribution of the mean occupancy corresponding to the n
averaging algorithm~Fig. 6! transforms here to an aniso
tropic pattern with fourfold symmetry rotated by the ang
b'37° in the clockwise direction, relative to the coordina
basis@33#. This appearance of growth axes is not, howev
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accompanied by a development of chirality at the macr
cale, which is actually absent, as also follows from Fig. 8

2. Multiple hits without erasing

The application of the other modification of the multipl
hit averaging~the Tang procedure! to the chiral DLA model
is summarized by Figs. 9 and 10; here we give the results
NC54 and NC516. In Fig. 9, the probability distribution
P(w,r ) @Figs. 9~a! and 9~d!#, the average angle of attach

ment w̄(r ) @Figs. 9~b! and 9~e!#, and the rotatory power
F(R) @Figs. 9~c! and 9~f!# are presented. The figure show
that the Tang scheme, as well as the multiple hits with er
ing ~Fig. 7!, causes decrease of the angle dispersion of
probabilityP(w,r ); this leads to the same peculiarities in th
curves P(w,r ) at w'670° clearly resolved as seconda
peaks. As in all the algorithms studied before~Figs. 2, 4, and
7!, a slight chirality~in the clockwise direction! is reported
for clusters of mesoradius and then disappears as one
ceeds to macroscopic scale.

The analysis of the mean cluster occupancyr(x,y) pre-
sented in Fig. 10 forNC54 @Fig. 10~a!# and NC516 @Fig.
10~b!# reveals the achiral and anisotropic properties of
produced patterns that qualitatively repeat the results of
multiple-hit averaging with erasing~Fig. 8!. As the main
difference from Fig. 8, Tang’s averaging leads to DLA clu
ters that are more anisotropic along the preferential gro
directions determined aspn/22b, n5$0,1,2,3% @33#.
2-6



INFLUENCE OF NOISE-REDUCTION SCHEMES ON . . . PHYSICAL REVIEW E63 011602
FIG. 10. Field-plot representation of the mean cluster occupancyr(x,y) for the chiral DLA model on a square lattice (d is the grid
spacing! in case of the multiple-hit algorithm without erasing~the Tang scheme!; parameter of averagingNC54 ~a! or 16~b!. These data are
computed from ensemble averaging over 1000 clusters of radiusR'102d consisting of 350~a! or 300 ~b! chiral particles; the fields are
0.005<r,0.05, 0.05<r,0.1, and 0.1<r,1 from the outer to the inner.
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V. DISCUSSION AND CONCLUSIONS

Let us summarize the statistical investigations of the D
model performed and described in the previous two sectio
The most important result we obtained is that the introd
tion of microchirality into the ordinary Witten-Sander formu
lation does not, remarkably, yield a chiral behavior of gro
ing clusters at the macroscopic length scale for either
original DLA algorithm or various multiple-hit averagin
schemes. What does this mean, how can we explain it,
what can we conclude? These are the topics of this sect

Before we start to discuss the questions posed above
us review a general natural picture. In spite of the variety
growth structures observed in non-equilibrium Laplacia
type systems@3–10#, the formation of chiral patterns is re
ported only for a small number of objects such as liqu
crystals @34,35#, bacterial colonies@36–39#, and fullerene-
based films@40,41#. However, the vast majority of growth
units demonstrate a significant asymmetry at the microsc
level consistent with geometric or kinetic factors—typic
examples vary from chiral carbon chains in organic m
ecules@42# to the complex collective behavior of bacter
@43#.

This natural disparity between micro- and macroasymm
try ~or symmetry! is closely associated with the theoretic
problem of the balance between deterministic and stocha
forces in growth processes that are far from equilibrium.
deed, the chirality here plays the role of an order/disor
parameter, the scale evolution of which can be quantitativ
studied, e.g., by rotatory power measurements. Thus
DLA model, the principal representation of nonequilibrium
diffusive, and fractal growth, is of fundamental importanc

In order to analyze the DLA mechanism in detail, o
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needs to cut the Gordian knot of deterministic and stocha
contributions, which both affect the process. The DLA det
ministic part can be described separately from the stocha
part—it is the quasi-steady-state approximation of the
diffusion problem@12#:

¹2F~r !50, ~5!

F~r !urP r̄5F0~r !, ~6!

VnurP r̄c
5G~“F•nurP r̄c

!. ~7!

HereF(r ) is the growth potential~e.g., energy density, con
centration, etc.! satisfying the Laplace equation~5!; F0(r ) is
a given function that implies the Dirichlet condition~6! on
the boundaryrP r̄ ; the symbolr̄ c denotes the interface pa
of the whole boundary, on which the conservation law~7! is
imposed;n is the unit normal,Vn is the normal growth
speed, andG is a constant determined by diffusivity an
other physical parameters.

As follows from this general formulation@Eqs. ~5!–~7!#,
the deterministic contribution of DLA is strongly influence
by asymmetry in aggregation conditions on the interfa
The imposed geometrical chirality of the walkers definite
implies chiral properties of Eq.~7! arising from asymmetric
behavior of the normal vectorn. In other words, if the DLA
model was a fully deterministic process, our introduction
microchirality would result in chiral patterns at macroscop
length scale as well as at mesoscale. The absence of cl
resolved macrochirality allows us to draw the conclusi
that, in the superposition of deterministic and stochas
DLA forces, the random contribution is dominating. Th
2-7
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domination here is considered as a short-range loss
memory about local growth conditions.

The weak long-range correlation of symmetry revealed
the DLA-produced clusters is not, in principle, a self-evide
property caused by the fractal scaling. For the simplest co
terexample, we can discuss the other class of stocha
growth algorithms based on the Eden model@44#. In this
process, a fractal cluster is formed by the appearance of
branches originating from any of the particles of that clus
with a given probability~the variable parameter!. As pointed
out by Ben-Jacob and co-workers@36,37#, the introduction of
chirality into the mechanism of an Eden-type sidebranch
combined with artificial nutrient laws results in a numeric
scheme that satisfactorily simulates the behavior of the b
terium Bacillus subtilis, known to form chiral colonies. The
self-similar patterns produced maintain the initial micr
chirality independently of length scale, demonstrating
domination of local growth rules over statistical randomne
in contrast with the DLA model.

There exists a point of view that multiple-hit averagin
applied to the Witten-Sander DLA algorithm should lead
noise reduction, i.e., the original stochastic nature of DLA
reduced and the randomness of growing clusters is
creased. A reasonable justification focuses on the lattice
isotropy being considered as a parameter of order; then
known enhancement of the anisotropy, a result of
multiple-hit schemes, is generally explained as a more de
ministic behavior of the model. This theory seems nevert
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less to have the following serious gap—the appearance
anisotropy has, as for its background, the very lattice eff
caused by various growth paths of walkers aggregating
different crystallographic directions@23,24#. As shown by
Johnson and Sekerka@12#, this growth anisotropy can be
successfully excluded by the introduction of an attachm
probability depending on crystallographic orientation and
eraging intensity, so the problem raised still remains uncle

Based on the possible connection of multiple-hit aver
ing and DLA determinism, one may expect a substantial
crease of the deterministic contribution and, therefore
crossover from achiral~weak long-range correlation! to chi-
ral ~stable long-range correlation! shapes when we procee
to the noise-reducing schemes. However, neither the ach
chiral crossover nor even a significant rise of chirality
mesoscale is experimentally observed; the only differe
from the Witten-Sander clusters is that the multiple-hit p
terns are more anisotropic and spatially rarefied. Thus
conclude that neither of the averaging algorithms stud
~multiple hits with and without erasing! breaks the original
balance existing between the deterministic and stocha
forces in the DLA model. We believe this result to be fu
damental for all DLA-type statistics.
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